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Revised structure of deacetyl-1,10-didehydrosalvinorin G
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Abstract—In comparison with the NMR data of salvinorin A and its 8-epimer, the published structure of deacetyl-1,10-didehydro-
salvinorin G was revised to its 8-epimer. The stereochemistry of 8-epi-deacetyl-1,10-didehydrosalvinorin G was further confirmed by
NOESY and chemical synthesis.
� 2007 Elsevier Ltd. All rights reserved.
Salvinorin A (1a), a non-nitrogenous neoclerodane dit-
erpenoid, was isolated from the Mexican medicinal
plant Salvia divinorum.1,2 Compound 1a was identified
as a potent and selective kappa (j) opioid receptor
(KOR) agonist and as the key ingredient for psychoac-
tive effects.3–5 During the course of structure–activity
relationship (SAR) studies,6–18 it was found that 1a
and its derivatives readily underwent epimerization at
C-8 under basic conditions. Using various inorganic
bases, such as NaBH4,2,12,19 NaHCO3,20 Na2CO3,7,12

K2CO3,8 LiSEt10 and LiI,11 1a produced corresponding
natural (8-Hb) and unnatural (8-Ha, also called 8-epi-)
mixtures. Surprisingly, treatment of 1a with excess
strong base KOH or Ba(OH)2 gave a natural salvinorin
derivative deacetyl-1,10-didehydrosalvinorin G that was
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Figure 1. Conformational structures of 2a and 2b.
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claimed by different research groups to have structures
2a and 3.13,8 In general, the affinity and potency of nat-
ural salvinorin derivatives show much higher KOR
binding activities than those of unnatural 8-epi-
mers.8,12,15,21 Since the configuration of a molecule can
significantly affect KOR binding, it is essential to esta-
blish a reliable method which would unambiguously
determine the stereochemistry at C-8 of salvinorins. This
prompted us to conduct a comprehensive analysis of
the 1H and 13C NMR data of natural and unnatural
salvinorin derivatives. The differences of 1a and its 8-
epimer (1b) in their 1H and 13C NMR spectra are dis-
cussed in this Letter. Based on the summarized NMR
data and chemical synthesis, the stereochemistry of 2a
at C-8 is revised to its 8-epimer (2b) as shown in Figure 1.
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In connection with our previous study related to deter-
mining the stereochemistry of betulinic acids,22 we reco-
gnized that the 1H and 13C NMR data of salvinorins
and their corresponding 8-epimers have significant dif-
ferences. A pair of 8-epimers (1a and 1b), isolated9

and synthesized8 in our group, was selected as standard
compounds for NMR analyses. Using 2D NMR tech-
niques, including COSY, NOESY, HMQC and HMBC,
permitted the full assignments of all 1H and 13C NMR
chemical shifts. The relative stereochemistry at the C-8
position of these compounds was unambiguously deter-
mined, based on their 1H and 13C NMR data. For
instance, in the 1H NMR spectra, the C-8-H of 1a reso-
nated at d 2.07 (dd, J = 3.0 and 12.0 Hz), confirming
axial orientation, while that of 1b resonated at d 2.45
(d, J = 2.7 Hz) for equatorial orientation. The chemical
shift change (Dd) between 1a and 1b is about 0.38 ppm
(Table 1). In addition, the C-12-H of 1b shifted upfield
(Dd 0.27 ppm) to d 5.26 (dd, J = 1.8 and 12.0 Hz) in
comparison with that of 1a at d 5.53 (dd, J = 4.8 and
11.7 Hz). The coupling constants of H-12 revealed the
axial orientation of H-12 in both 1a and 1b. The
Table 1. 1H NMR data (300 MHz) at H-8 and -12 for 1a, 1b and 2b in
CDCl3

Compound 1aa 1ba Dd1b�1a 2b

H-8 (d) 2.07 2.45 +0.38 2.99
J value dd, 3.0, 12.0 d, 2.7 dd, 5.1, 9.6
H-12 (d) 5.53 5.26 �0.27 5.45
J value dd, 4.8, 11.7 dd, 1.8, 12.0 dd, 2.4, 12.3

a See Refs. 10, 20 and 23 for full 1H NMR assignments of 1a and 1b.

Table 2. 13C NMR data (75 MHz) for 1a, 1b and 2b in CDCl3

Carbon # 1a 1b Dd1b�1a
a 2b

1 202.0 202.3 145.1
2 75.0 75.2 180.7
3 30.7 30.7 128.2
4 53.6 52.9 157.5
5 42.1 42.2 42.3
6 38.1 34.0 �4.1 28.3
7 18.1 17.6 21.9
8 51.4 45.2 �6.2 44.8
9 35.4 34.7 37.6

10 64.1 64.0 140.0
11 43.4 48.0 +4.6 36.8
12 72.0 70.0 �2.0 70.8

a Data is given when Dd1b�1a is more than 1.0 ppm.
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Scheme 1.
X-ray analyses showed that the lactone ring in 1a adopts
a chair confirmation,1,2,17 while the one in 1b is a boat
conformation.21 The different conformation may ex-
plain the J values differences of H-12 between 1a and
1b. On the other hand, the H-8 configuration also
strongly affects the 13C NMR data in B- and C-ring car-
bons. For instance, the methylene carbon (C-11), car-
bonyl carbon (C-17) and axial methyl carbon (C-20) of
1b showed lower-field chemical shifts in comparison
with those of 1a (Table 2), while the 13C resonances of
C-6, C-8, C-12, C-13 and C-19 of 1b shifted to upper
field. In summary, the characteristic carbon peaks of
C-12, C-17 and C-20 can be employed readily for iden-
tification of natural and unnatural 8-epimers. In the pre-
vious published papers,10,13,21 8-epimers were mainly
determined based on the coupling constants of H-8
and H-12, irradiation of H-12 for a NOE enhancement
of H-8, and a general TLC Rf value. Our generalized
NMR data should provide reliable information for iden-
tification of future salvinorin analogs, including C-8
epimers.

We reported previously that treatment of 1a with
Ba(OH)2 in MeOH gave an unexpected oxidative-elimi-
nation product that was assigned as structure 3.8 In a
very short time span, the structure of 3 was revised to
deacetyl-1,10-didehydrosalvinorin G (2a), which was
synthesized in 1 M KOH methanol solution.13 The
structural revision was based on extensive NMR exper-
iments, including 1H NMR, 13C NMR, DEPT, COSY,
HMQC, HMBC and NOE, and HR-ESI-MS. Following
the published procedure (Scheme 1),13 indeed, we iso-
lated the same product.24 The NMR data were in full
Carbon # 1a 1b Dd1b�1a
a 2b

13 125.2 123.4 �1.8 124.4
14 108.4 108.5 108.4
15 143.7 143.5 143.7
16 139.4 139.7 139.6
17 171.1 173.4 +2.3 173.2
18 171.5 171.8 165.4
19 16.4 15.2 �1.2 30.3
20 15.2 24.6 +9.4 24.4
–COOMe 52.0 51.7 52.6
–COCH3 170.0 169.7 —
–COCH3 20.6 20.5 —
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Figure 2. Key NOE interactions of 2b.
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agreement with previous report13 except that the assign-
ments of H-7a (d 1.98) and H-7b (d 2.24) should be
reversed as H-7a (d 2.24) and H-7b (d 1.98). After care-
ful comparison of our 1H and 13C NMR data with those
of 1a and 1b (Tables 1 and 2), we found that structure 2a
assigned to the product was incorrect,13 and the correct
structure should be 8-epi-deacetyl-1,10-didehydrosalvi-
norin G (2b, Fig. 1). In the 1H NMR spectrum, the
C-8-H of 2b shifted much lower field to d 2.99 (dd,
J = 5.1 and 9.6 Hz), while the C-12-H shifted upfield
slightly compared with that of 1a (Table 1). The H-12
coupling constants (dd, J = 2.4 and 12.3 Hz) of 2b were
closer to those of 1b (dd, J = 1.8 and 12.0 Hz) than of 1a
(dd, J = 4.8 and 11.7 Hz), but the H-8 of 2b showed the
J values (5.1 and 9.6 Hz) for axial orientation.13 How-
ever, this perplexing configuration at C-8-H was soon
resolved by comparing the C-ring 13C NMR data of
2b with those of 1a and 1b (Table 2). The 13C NMR
chemical shifts at C-8, C-12, C-17 and C-20 are very
similar to those of 1b, indicating that the orientation
of H-8 is a. The revised structure 2b was further con-
firmed by the NOE interactions shown in Figure 2. In
the NOESY spectrum (see Supplementary data), H-8
(d 2.99) showed cross peaks to H-7a (d 2.24, strong),
H-7b (d 1.98, weak), H-19 (d 1.72) and H-20 (d 1.67),
while H-12 (d 5.45) related to H-11a (d 3.11, strong),
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H-11b (d 2.02, weak) and H-20 (d 1.67). It should be
noted that the crossed peak between H-8 and H-12
was very weak. Furthermore, when 1b, the 8-epimer of
1a, was treated with 1 M KOH in MeOH, it afforded
endione 2b in a 67% isolated yield (Scheme 1).24 Valdes
et al.2 reduced 1a with NaBH4 in i-PrOH and afforded
equal amounts of 8-epimeric mixtures (diol 4a and 8-
epi-diol 4b), while Munro et al.13 reduced 2a with
NaBH4 in EtOH/CH2Cl2 and obtained sole product—
8-epi-diol 4b. All of this evidence supports structure 2b.

The coupling constants of H-8 in 2b were misleading in
comparison with those of other 8-epi-salvinorins. This is
the main reason for Munro et al.13 to determine H-8 as b
configuration. Because of the double bond between C-1
and C-10, the conformation of 2b is distorted. It is
known that A/B/C rings in 1a are in chair/chair/chair
conformation1,2 and A/B/C rings in 1b are in chair/
chair/boat conformation.21 Based on NOESY and
molecular modeling analyses, A/B/C rings in 2b should
be face-down boat/twist-chair/twist-chair conformation
(Fig. 1). Under this circumstance, both H-7b and H-8
resemble axial orientations and showed a closer diaxial
coupling constant (9.6 Hz). Without sufficient NOE
data,13 the incorrect assignments of H-7a and H-7b in
2b might depend on those of the known salvinorins C
(5a), D (5b), E (5c) and F (5d), isolated from S. divino-
rum by Munro and Rizzacasa.25 Because the chemical
shifts of H-7 and H-8 in 5a, 5b, 5c and 5d over-
lapped,19,25 the unambiguous assignments of H-7a and
H-7b with NOESY spectra became very difficult. Unex-
pectedly, one year later, Munro gave the revised assign-
ments of H-7a and H-7b of 2b without any scientific
explanation.20 Based on our NOE data, all protons in
2b were fully assigned.24

In conclusion, a concise and informative NMR method
for the determination of the C-8-H configuration of
salvinorins was established. Based on this method, the
correct product obtained by the treatment of 1a with
hydroxide in MeOH has been identified. The C-8
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epimeric structure (2b) was confirmed by NOESY spec-
trum and chemical conversion.
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